Kohonen.java

/*
 * MIT License
 *
 * Copyright (c) 2009-2016 Ignacio Calderon <https://github.com/kronenthaler>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
package libai.nn.unsupervised;

import libai.common.Shuffler;
import libai.common.matrix.Column;
import libai.common.Pair;
import libai.nn.NeuralNetwork;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

/**
 * Kohonen's Self-organizative Maps or SOM or Kohonen. This maps are one of the
 * most important unsupervised neural networks of the history. The most
 * important feature of the kohonen's maps is the possibility of transform any
 * multidimensional space into a R^2 space, providing a highly precise
 * clustering method. One of the most famous examples for the kohonen's maps is
 * the transform the RGB color cube into a plane where the reds, greens, blues,
 * etc are clustered in a very similar way of the any color picker utility.
 *
 * @author kronenthaler
 */
public class Kohonen extends UnsupervisedLearning {

    private static final long serialVersionUID = 8918172607912802829L;

    private final Column W[];      //array of weights ijk, with k positions.
    private final int[][] map;     //map of the outputs
    private final int[] nperlayer; //array of 3 positions, {#inputs,#rows,#columns}
    private double neighborhood;
    private final int stepsx[], stepsy[];

    /**
     * Constructor. Creates a kohonen's map with nperlayer[0] inputs,
     * nperlayer[1] rows and nperlayer[2] columns. Additional set the initial
     * size of the neighborhood and the way in the neighbors are connected.
     *
     * @param nperlayer Number of neurons (input, rows and columns)
     * @param neighborhood Initial size of the neighborhood
     * @param neighboursX neighbors along the X-axis
     * @param neighboursY neighbors along the Y-axis
     */
    public Kohonen(int[] nperlayer, double neighborhood, int[] neighboursX, int[] neighboursY) {
        this(nperlayer, neighborhood, neighboursX, neighboursY, getDefaultRandomGenerator());
    }

    /**
     * Constructor. Creates a kohonen's map with nperlayer[0] inputs,
     * nperlayer[1] rows and nperlayer[2] columns. Additional set the initial
     * size of the neighborhood and the way in the neighbors are connected.
     *
     * @param nperlayer Number of neurons (input, rows and columns)
     * @param neighborhood Initial size of the neighborhood
     * @param neighboursX neighbors along the X-axis as deltas from origin eg.
     * +1, 0, -1, 2
     * @param neighboursY neighbors along the Y-axis as deltas from origin eg.
     * +1, 0, -1, 2
     * @param rand Random generator used for creating matrices
     */
    public Kohonen(int[] nperlayer, double neighborhood, int[] neighboursX, int[] neighboursY, Random rand) {
        super(rand);
        this.nperlayer = nperlayer;
        this.neighborhood = neighborhood;

        W = new Column[nperlayer[1] * nperlayer[2]];
        stepsx = neighboursX;
        stepsy = neighboursY;

        for (int i = 0; i < nperlayer[1]; i++) {
            for (int j = 0; j < nperlayer[2]; j++) {
                W[(i * nperlayer[2]) + j] = new Column(nperlayer[0]);
                W[(i * nperlayer[2]) + j].fill(true);
            }
        }
        map = new int[nperlayer[1]][nperlayer[2]];
        for (int[] map1 : map) {
            Arrays.fill(map1, -1);
        }
    }

    /**
     * Constructor. Creates a kohonen's map using the standard neighborhood (up,
     * down, left, right). Alias of Kohonen(nperlayer, _neighborhood, new
     * int[]{0,0,1,-1}, new int[]{-1,1,0,0});
     *
     * @param nperlayer Number of neurons (input, rows and columns)
     * @param neighborhood Initial size of the neighborhood
     */
    public Kohonen(int[] nperlayer, double neighborhood) {
        this(nperlayer, neighborhood, new int[]{0, 0, 1, -1}, new int[]{-1, 1, 0, 0});
    }

    /**
     * Constructor. Creates a kohonen's map using the standard neighborhood (up,
     * down, left, right). Alias of Kohonen(nperlayer, _neighborhood, new
     * int[]{0,0,1,-1}, new int[]{-1,1,0,0});
     *
     * @param nperlayer Number of neurons (input, rows and columns)
     * @param neighborhood Initial size of the neighborhood
     * @param random Random generator used for creating matrices
     */
    public Kohonen(int[] nperlayer, double neighborhood, Random random) {
        this(nperlayer, neighborhood, new int[]{0, 0, 1, -1}, new int[]{-1, 1, 0, 0}, random);
    }

    /**
     * Train the map. The answers are omitted for the training process but are
     * necessary for the labeling of the map.
     *
     * @param patterns The patterns to be learned.
     * @param alpha The learning rate.
     * @param epochs The maximum number of iterations
     * @param offset The first pattern position
     * @param length How many patterns will be used.
     */
    @Override
    public void train(Column[] patterns, double alpha, int epochs, int offset, int length) {
        validatePreconditions(patterns, epochs, offset, length);

        double lambda = neighborhood;
        double alpha1 = alpha;

        Shuffler shuffler = new Shuffler(length, NeuralNetwork.getDefaultRandomGenerator());
        initializeProgressBar(epochs);

        Column temp = new Column(nperlayer[0]);

        for (int currentEpoch = 0; currentEpoch < epochs; currentEpoch++) {
            //System.out.println("epoch: "+curr_epoch);
            //shuffle
            int[] sort = shuffler.shuffle();

            for (int k = 0; k < length; k++) {
                //Who is the winner
                Pair<Integer, Integer> winner = getWinnerCell(patterns[sort[k] + offset]);

                //Update winner and neighbors.
                for (int i = 0; i < nperlayer[1]; i++) {
                    for (int j = 0; j < nperlayer[2]; j++) {
                        Column Mij = getPrototypeAt(i, j);
                        patterns[sort[k] + offset].subtract(Mij, temp);
                        temp.multiply(alpha1 * neighbor(i, j, winner.first, winner.second), temp);
                        Mij.add(temp, Mij);
                    }
                }
            }

            //update neighborhood's ratio.
            if (neighborhood >= 0.5) {
                neighborhood = lambda * Math.exp(-(float) currentEpoch / (float) epochs);
            }

            //update alpha
            if (alpha1 > 0.001) {
                alpha1 = alpha * Math.exp(-(float) currentEpoch / (float) epochs);
            }

            if (progress != null) {
                progress.setValue(currentEpoch);
            }
        }

        if (progress != null) {
            progress.setValue(progress.getMaximum());
        }
    }

    @Override
    public Column simulate(Column pattern) {
        Column ret = new Column(nperlayer[0]);
        simulate(pattern, ret);
        return ret;
    }

    @Override
    public void simulate(Column pattern, Column result) {
        Pair<Integer, Integer> winner = getWinnerCell(pattern);
        getPrototypeAt(winner.first, winner.second).copy(result);
    }

    private Pair<Integer, Integer> getWinnerCell(Column pattern) {
        Pair<Integer, Integer> winner = new Pair<>(0, 0);
        double min = Double.MAX_VALUE;
        for (int i = 0; i < nperlayer[1]; i++) {
            for (int j = 0; j < nperlayer[2]; j++) {
                double temp = euclideanDistance2(pattern, getPrototypeAt(i, j));
                if (temp < min) {
                    min = temp;
                    winner.first = i;
                    winner.second = j;
                }
            }
        }
        return winner;
    }

    public Column getPrototypeAt(int i, int j) {
        return W[(i * nperlayer[2]) + j];
    }

    private double neighbor(int i, int j, int ig, int jg) {
        return gaussian(distance(i, j, ig, jg), neighborhood * neighborhood);
    }

    private double distance(int i, int j, int ig, int jg) {
        return (((i - ig) * (i - ig)) + ((j - jg) * (j - jg)));
    }

    /**
     * @return The label map.
     */
    public int[][] getMap() {
        return map;
    }

    /**
     * Label the output for the patterns and expand the results through the
     * neighbors until the map is completely fill. NOTE: The expansion isn't an
     * standard process but is very helpful to avoid unknown answers.
     *
     * @param patterns The patterns to label
     * @param answers The expected answer for the patterns
     * @param offset The initial pattern position
     * @param length How many patterns to label.
     */
    public void expandMap(Column[] patterns, Column[] answers, int offset, int length) {
        //System.out.println("labelling...");
        for (int k = 0; k < length; k++) {
            Pair<Integer, Integer> winner = getWinnerCell(patterns[k + offset]);
            //simulate(patterns[k + offset], winner);

            int i = winner.first;
            int j = winner.second;

            if (map[i][j] == -1) //no overlapping
            {
                map[i][j] = (int) answers[k + offset].position(0, 0); //must have just one position and should be an integer
            }
        }

        ArrayList<Pair<Integer, Integer>> q = new ArrayList<>();

        for (int i = 0; i < nperlayer[1]; i++) {
            for (int j = 0; j < nperlayer[2]; j++) {
                if (map[i][j] != -1) {
                    q.add(new Pair<>(i, j));
                }
            }
        }

        //System.out.println("BFS...");
        while (!q.isEmpty()) {
            Pair<Integer, Integer> current = q.remove(0);
            int c = map[current.first][current.second];

            for (int k = 0; k < stepsx.length; k++) {
                int i = current.first + stepsx[k];
                int j = current.second + stepsy[k];
                if (i >= 0 && i < nperlayer[1] && j >= 0 && j < nperlayer[2] && map[i][j] == -1) {
                    q.add(new Pair<>(i, j));
                    map[i][j] = c;
                }
            }
        }
    }
}